了解更多关于我们的专家团队、主要部门以及他们如何为广泛的工业市场提供解决方案。
凭借广泛的产品组合,我们拥有非常适合您应用需求的技术。
我们稳定可靠的气体分析解决方案可测量超过20种气体,可达到业界先进的精度和稳定性。
我们的专业知识和单一供应商解决方案有助于改善广泛的工业流程。
我们为危险和安全区域应用提供准确可靠的气体分析,包括超低检测和便携式产品。
为您的过程控制找到正确的气体分析解决方案。我们的探测器允许您通过关键参数进行选择,包括气体感测,使用的技术和所需的量程。
您是否想寻找有关已停产分析仪的详细信息?在这里你可以找到所有你需要的信息。
从单个带采样系统的分析仪到分析小屋,我们的专家团队可以提供可扩展的解决方案,以满足您的工艺需求。
我们提供定制的服务产品,以满足您精确的过程控制要求。
在保修期内报告产品故障,请填写这里的表格,以便及时回复。
获得您需要的高质量、授权的备件和消耗品,并快速交付。
我们的宣传册详细介绍了适合您的气体分析仪的备件资源。
Servomex致力于在整个组织中对人员和业务采取可持续的方法。
我们的全球业务建立在一套基本的价值观之上,这些价值观支撑着我们的工作、决策和文化。
成为Servomex团队的重要一员,与全球气体分析领域的领导者一起打造您的职业道路。
认识我们一些关键人员,并了解是什么让他们选择在Servomex工作。
如果你想要一份有意义的职业,与全球众多优秀的人才一起工作,请查看我们最新的招聘信息。
我们有适合各个层次的职业道路,从学徒和毕业生到经验丰富的领导角色
搜索我们全系列的杂志,视频,手册,白皮书,了解更多您需要的信息
按类别搜索,从我们广泛的产品和应用资源中获得更多信息。
了解Servomex和气体分析领域的最新信息,包括新产品发布和行业事件。
Industrial processes operated at plants often present hazards to the people that work there. Plant design aims to address many of the issues that could compromise safety.
Process safety and personal safety are directly affected by the activities undertaken throughout the lifecycle of the plant, beginning with design.
A Safety Instrumented System (SIS) is utilized to resolve the delicate balancing act between efficient and safe operation of the plant. It is used when other protection methods can’t reduce the probable frequency of a hazard resulting in harm, to a tolerable level.
An SIS is engineered per IEC 61511 to perform specific control functions to failsafe or maintain safe operations of a process when unacceptable or dangerous conditions occur.
The specific control functions performed by an SIS are called Safety Instrumented Functions (SIF). SIFs provide an active protection method, i.e., they have to function automatically and on-demand to detect, decide and act based on input conditions to mitigate the consequences of an industrial hazard by moving the system into a safe state. In contrast, passive protection measures mitigate risk without active functioning or intelligence. Gas analyzers are often used as one active protection component within a SIF.
The gap between tolerable hazard frequency and probable pre-SIS hazard frequency determines the required risk reduction, which directly translates to what is known as the Target Safety Integrity Level (SIL).
Each SIF must be designed to meet the requirements at the Target SIL level and thus demonstrate the required level of risk reduction. The SIL calculations required for this are somewhat complex and time-consuming, but essentially, the process is to gather failure rate data for the SIF components and account for factors such as test frequency, redundancy, voting arrangements, etc. The result is that for each SIF, an overall Probability of Failure on Demand (PFD) is calculated.
Software packages, such as exSILentiaTM or SIL-SolverTM, are increasingly used to make SIF design and SIL verification easier. They allow modelling of a SIF and use data from integrated device databases to run calculations to arrive at the probability of failure on demand (PFDavg) and mean time to spurious failure (MTTFS).
These tools provide cost and time savings, but could they provide increased benefits as a result of digital transformation?
Rather than using generalized failure rate values for each technology type, it may be that, in the future, they use specific data shared in an agreed standard digital format from the equipment suppliers. Specific equipment failure data would provide more accurate results.
For complex products where the market has a diverse range of quality, performance capability, and gas measurement technologies, the change in results could be significant, possibly reducing SIF cost or reducing the frequency of manual and production invasive proof test intervals.
Furthermore, if gas analyzer data (such as measurement, health, and event logs) were available and linked with the application and environmental context, the resulting real-world failure data would provide a sound basis for SIL verification, providing greater confidence in safety margins.
Additionally, of course, the data would provide new insight into the causes of failure in the field, allowing product design to become increasingly reliable, leading to safer operation.
您已添加到我们的新闻通讯中